
Exploring Causes of Frustration for Software
Developers

Denae Ford
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
Email: dford3@ncsu.edu

Chris Parnin
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
Email: cjparnin@ncsu.edu

Abstract—When learning to program, frustrating experiences
contribute to negative learning outcomes and poor retention in
the field. Defining a common framework that explains why these
experiences occur can lead to better interventions and learning
mechanisms. To begin constructing such a framework, we asked
45 software developers about the severity of their frustration and
to recall their most recent frustrating programming experience.
As a result, 67% considered their frustration to be severe.
Further, we distilled the reported experiences into 11 categories,
which include issues with mapping behaviors to code and broken
programming tools. Finally, we discuss future directions for
defining our framework and designing future interventions.

I. INTRODUCTION

Developers must be able to constantly learn new technolo-
gies, adapt to new environments, and overcome challenges
when learning and practicing their craft. However, failure to
overcome obstacles in these situations can introduce a sense of
mounting frustration in developers that can negatively impact
learning outcomes [1] and influence retention in a field [2].

Researchers have studied frustration in psychology and
software development. Dollard [3] defines frustration as an
obstacle encountered in the pursuit of an expected goal. Ko
et al. [4] describes six learning barriers that programmers
face when learning to program. When these barriers are not
overcome, developers can experience frustration and perceive
their goal as increasingly insurmountable. In computer science
education, several studies have been done to find connec-
tions with frustration and general learning goals [1], [5]. In
addition, affective computing techniques have been used to
detect frustration during programming tasks [6]. Overall, these
techniques provide a useful but incomplete foundation for
understanding frustration. Besides Eisenstadt’s bug war stories
[7], there has been a lack of a concerted effort in cataloging
and categorizing the frustrating experiences developers face.

In this paper, we present findings from a survey of 45
software developers where we asked about their specific
frustrating experiences. We organized our findings into 11
categories of causes of frustration for software developers.

II. METHODOLOGY

We conducted a survey of software developers to solicit
frustrating scenarios they have encountered. Links to the
survey were openly posted in computer science affinity groups

and emailed out to self-identified groups of software devel-
opers. A total of 45 software developers completed the 16
question survey1. The responders consisted of 23 students, 12
industry employees, and 10 that classified as both. The survey
asked the participants to rank the severity of their frustration
during programming tasks on a Likert scale from 1 to 5.
To identify the causes of frustration we focused on a single
question: When is the last time you were frustrated? We used
an open card sort to group each response into categories. Card
sorting is a technique used to define taxonomies from data [8].
Each author randomly selected 10 responses, identified their
themes, and compared these themes to the remaining responses
until arriving at a steady 11 categories.

III. CATEGORIES DEFINED

From the survey, 67% of respondents acknowledged that
frustration is a severe problem and their causes are reflected in
the categories below. Categories are ordered from the highest
to lowest frequency of cards. A response from the survey that
best represents the category is listed after each description.

Mapping Behavior to Cause - Responses in this category
refer to identifying what portion of the code was causing an
issue. Not having a good mental model of the code resulted
in frustration of misinterpretation of the task [9]. “I was
frustrated when I couldn’t figure out why there was a random
gap of space on my website...”

Programming Tools - Learning curves exist when getting
acclimated to a new tool: learning new features, shortcuts,
etc. This learning curve is warped when the tool is broken.
Respondents in this category acknowledged both of these
frustrating occurrences with programming tools. “I’ve been
trying to transition to using an IDE I never have before...”

Size - Respondents acknowledged three issues related to
the size of their tasks: (1) Large goal spaces, high cognitive
complexity: Where do I begin?, (2) Gulf of completion: I’ve
come a long way but there is a little thing blocking me, and (3)
Large artifacts: There’s so much to understand. “There were
some logical errors in a big code base...”

New Project Adjustment - Adjusting to a new project
environment takes time. During this time the developer is

1https://github.com/alt-code/FrustrationExperiment/blob/master/Survey.md



unfamiliar with how to accomplish tasks, appropriate questions
to ask, as well as configuration issues. “I was trying to set up
some software for a study I’m working on. I expected some
configuration obstacles, but I became frustrated...”

Unavailability of Resources - Documenting code is a
recommended practice, but when missing, it creates confusion.
In addition to documentation, this category acknowledges
services that are supposed to be available to users but were
not at their disposal. “The server I needed for my files was
not letting me log in and the only person who could fix it was
too busy working on something else.”

Programming Experience - Respondents mentioned issues
that arose with programming languages. These issues came
from confusion with syntax of various languages and experi-
ence with new frameworks. “I had to code something in Perl
and I didn’t know the language syntax.”

Simple Problem - Peers and management assign ‘simple’
tasks to individuals not fully comprehending the depth of the
truly complex issue. Frustration arises when the expectation is
not met and the ‘simple’ task is not as easy as recommended
by others. “Inability to code something that I know should be
simple.”

Fear of Failure - The obsession over the fear of failure and
not succeeding sets back individuals and overcomes them in
the form of frustration. “It builds a strong sense of anxiety. I
feel like I may not solve the issue...”

Internal Hurdles - Some respondents acknowledged that
they were the cause of their own frustration. These respondents
knew they have been putting this pressure on themselves; some
pressures even leading to fatigue. “The problem that I faced
with frustration is I tend to procrastinate...”

Limited Time - Respondents described a limited amount
of time allotted to work on projects. In the short amount of
time given it seems unreasonable to make significant progress
and make lasting impressions to others on a team. “I had to
deal with an ambitious project in a limited time frame.”

Peers - Respondents referred to peers as a source of dis-
traction from the task at hand. In addition, some respondents
mentioned their peers as incompetent and being subordinate.
“Peers were terrible programmers, less experienced, and
refused to use libraries/patterns to make things easier... ”

IV. DISCUSSION

Each of the categories are intertwined in a way that show
that one cause of frustration can be a part of the cause
of another. For example, managers and peers can claim a
task to be a simple problem which gives the developer high
expectations for a task. In addition, these high expectations
can cause developers to place pressure on themselves if the
simple problem is not as easy as others claim it to be. There
are many scenarios such as these that connect these categories.

Deriving these categories and connecting them through
scenarios forms relationships between groups. These groups
are internal pressures, external pressures, lack of experience,
and perception. External pressures include categories where
situations are out of the respondents control while internal
refers to pressure put on themselves. Aside from these pres-
sures placed on software developers there is a general lack

of experience that comes with the territory; it takes time to
get acclimated to new environments, programming languages,
etc. Perception refers to how software developers perceive the
problem and determines how to complete a task.

In addition to the defined categories, there was one response
in which the participant acknowledged they have an issue with
frustration. The respondent perceived frustration as inevitable
and embraced it saying, “My work revolves around it, so it’s
frequent and recent.” This new norm is expecting that there
are going to be challenges that require a bit of a headache;
expecting these obstacles is half the battle. The other half is
how these challenges are approached. This perspective comes
with experience and being able to reflect on them.

This corpus of data provides inspiration for interventions
and a new perspective to address the causes of frustration.
One intervention that can be derived is the unavailability of
resources such as peers in combination with limited documen-
tation presents the opportunity for crowd-based collaboration
tools. For example, a tool that matched developers with similar
issues in real time would aid this situation.

V. CONCLUSIONS & FUTURE WORK

Using an open card sort, we identified 11 areas for the
research community to explore in comprehending the frus-
tration of software developers. The results from this paper
have demonstrated that there is still a problem space of
frustration for developers and defined possible interventions.
For software developers, studying their behavior will give us
a better understanding of the obstacles they encounter. This
paper encourages the continuance of exploration into this
endeavor. In future work, we will rank the intensity of the
causes of frustration, investigate the enhancers of frustration,
and identify what coping mechanisms developers think are
helpful for frustration.

REFERENCES

[1] J. F. Grafsgaard, J. B. Wiggins, K. E. Boyer, E. N. Wiebe, and J. C. Lester,
“Automatically recognizing facial indicators of frustration: a learning-
centric analysis,” in Affective Computing and Intelligent Interaction
(ACII), 2013 Humaine Association Conference on, 2013, pp. 159–165.

[2] J. T. Garner and L. T. Garner, “Volunteering an opinion: Organizational
voice and volunteer retention in nonprofit organizations,” Nonprofit and
Voluntary Sector Quarterly, 2010.

[3] J. Dollard, N. E. Miller, L. W. Doob, O. H. Mowrer, and R. R. Sears,
Frustration and aggression. Yale University Press, 1939.

[4] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-
user programming systems,” in Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on. IEEE, 2004, pp. 199–206.

[5] S. Hansen and E. Eddy, “Engagement and frustration in programming
projects,” SIGCSE Bull., vol. 39, no. 1, pp. 271–275, Mar. 2007.

[6] M. M. T. Rodrigo and R. S. Baker, “Coarse-grained detection of student
frustration in an introductory programming course,” in Proceedings of the
fifth international workshop on Computing education research workshop.
ACM, 2009, pp. 75–80.

[7] M. Eisenstadt, “My hairiest bug war stories,” Communications of the
ACM, vol. 40, no. 4, pp. 30–37, 1997.

[8] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering.” in ICSE, 2014, pp. 12–13.

[9] S. Wiedenbeck, V. Fix, and J. Scholtz, “Characteristics of the mental
representations of novice and expert programmers: An empirical study,”
International Journal of Man-Machine Studies, vol. 39, no. 5, pp. 793–

812, 1993.


